Conformational changes in the multidrug transporter EmrE associated with substrate binding.

نویسندگان

  • Christopher G Tate
  • Iban Ubarretxena-Belandia
  • Joyce M Baldwin
چکیده

EmrE is a bacterial multidrug transporter of the small multidrug resistance family, which extrudes large hydrophobic cations such as tetraphenylphosphonium (TPP(+)) out of the cell by a proton antiport mechanism. Binding measurements were performed on purified EmrE solubilized in dodecylmaltoside to determine the stoichiometry of TPP(+) binding; the data showed that one TPP(+) molecule bound per EmrE dimer. Reconstitution of purified EmrE at low lipid:protein ratios in either the presence or the absence of TPP(+) produced well ordered two-dimensional crystals. Electron cryo-microscopy was used to collect images of frozen hydrated EmrE crystals and projection maps were determined by image processing to 7A resolution. An average native EmrE projection structure was calculated from the c222 and p222(1) crystals, which was subsequently subtracted from the average of two independent p2 projection maps of EmrE with TPP(+) bound. The interpretation of the difference density image most consistent with biochemical data suggested that TPP(+) bound at the monomer-monomer interface in the centre of the EmrE dimer, and resulted in the movement of at least one transmembrane alpha-helix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protonation-dependent conformational dynamics of the multidrug transporter EmrE.

The small multidrug transporter from Escherichia coli, EmrE, couples the energetically uphill extrusion of hydrophobic cations out of the cell to the transport of two protons down their electrochemical gradient. Although principal mechanistic elements of proton/substrate antiport have been described, the structural record is limited to the conformation of the substrate-bound state, which has be...

متن کامل

Structure, dynamics, and substrate-induced conformational changes of the multidrug transporter EmrE in liposomes.

EmrE, a member of the small multidrug transporters superfamily, extrudes positively charged hydrophobic compounds out of Escherichia coli cytoplasm in exchange for inward movement of protons down their electrochemical gradient. Although its transport mechanism has been thoroughly characterized, the structural basis of energy coupling and the conformational cycle mediating transport have yet to ...

متن کامل

Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli.

Multidrug resistance efflux transporters threaten to reverse the progress treating infectious disease by extruding a wide range of drug and other cytotoxic compounds. One such drug transporter, EmrE, from the small multidrug resistance family, utilizes proton gradients as an energy source to drive substrate translocation. In an effort to understand the molecular structural basis of this transpo...

متن کامل

Intrinsic Conformational Plasticity of Native EmrE Provides a Pathway for Multidrug Resistance

EmrE is a multidrug resistance efflux pump with specificity to a wide range of antibiotics and antiseptics. To obtain atomic-scale insight into the attributes of the native state that encodes the broad specificity, we used a hybrid of solution and solid-state NMR methods in lipid bilayers and bicelles. Our results indicate that the native EmrE dimer oscillates between inward and outward facing ...

متن کامل

X-ray structure of the EmrE multidrug transporter in complex with a substrate.

EmrE is a prototype of the Small Multidrug Resistance family of efflux transporters and actively expels positively charged hydrophobic drugs across the inner membrane of Escherichia coli. Here, we report the x-ray crystal structure, at 3.7 angstrom resolution, of one conformational state of the EmrE transporter in complex with a translocation substrate, tetraphenylphosphonium. Two EmrE polypept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 332 1  شماره 

صفحات  -

تاریخ انتشار 2003